1.5.8

1.5.9

1.5.10

	UNIT I	1	1.5.11	Cofactor of an Element	1-35
		1	1.5.12	Adjoint of a Matrix	1-35
Chapte	er 1 : Matrices	1-1 to 1-53	1.5.13	Solved Examples	1-36
Syllab	uie :	1	1.5.14	Inverse of a Matrix by Adjoint Metho	d1-38
Syllab	us.	1	1.6	Solution of Simultaneous Equation	is by
1.1 Cc	oncept of Matrix			Matrix Inversion Method	1-43
1.2 Ty	pes of Matrices	1	1.7	Steps to Solve the System	1-44
	ldition, Subtraction and multip atrices	lication by scalar of		UNIT II	
1.4 Pr	oduct of two matrices		Chapte	r 2 : Derivatives	2-1 to 2-57
1.5 Ac	djoint and Inverse of a matrix		Syllab	ue ·	
3^	.5.		Syllab	us.	
	lution of Simultaneous linear	equations of two	2.1 Co	ncept and Definition of Differentiat	ion
va	riables.		2.2 W	orking rules: Sum, Product, Division	
1.1	Introduction	1-1	2.3 Ch	ain Rule	
1.2	Definition		2.4 Derivative of Implicit functions		
1.3	Comparison between Determ	inant		·	
	and Matrix	1-2	2.5 De	rivative of Parametric functions	
1.4	Types of Matrices	1-2	2.6 Lo	garithmic Differentiation	
1.5	Algebra of Matrices	1-6	2.7 Su	ccessive Differentiation up to secon	d order
1.5.1	Addition	1-6	2.8 Ap	plications : Velocity, Acceleratio	n, Maxima &
1.5.2	Subtraction	1-6	Mi	nima of given simple functions.	
1.5.3	Equality of Matrices	1-7	2.1	Introduction	2-1
1.5.4	Multiplication of Matrices	1-7	2.2	Definition of Derivative	2-1
1.5.5	Illustrative Examples	1-9	2.3	Geometrical Meaning of Derivative	es 2-2
1.5.6	Examples Based on Multiplication	on 2	2.4	Derivatives of Standard Functions	2-2
	of Matrices	1-13	2.4.1	Constant Function	2-2
1.5.7	Transpose of a Matrix	1-25	2.4.2	Power Function	

2.4.3

2.4.4

Orthogonal Matrix1-26

Determinant of a Matrix1-32

Minor of an Element1-35

Exponential Function.....2-3

Logarithmic Function.....2-3

2.4.5	Trigonometric Functions By using
	First Principle2-4
2.4.6	Derivatives of Inverse Trignometric
	Functions2-6
2.5	Derivatives of Some Standard Functions2-8
2.6	Rules of Differentiation2-9
2.6.1	Derivative of Sum2-9
2.6.2	Derivative of Difference2-9
2.6.3	Examples2-9
2.6.4	Derivative of Product2-12
2.6.5	Derivative of Quotient2-14
2.6.6	Derivatives of a Composite Functions
	(Chain Rule)2-16
2.7	Composite Derivatives2-17
2.8	Derivatives of Inverse Functions2-21
	Derivatives of Inverse Functions2-21 Derivatives of Inverse Trignometric
2.8 2.9	
	Derivatives of Inverse Trignometric
2.9	Derivatives of Inverse Trignometric Functions by Suitable Substitution 2-22
2.9 2.10	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11 2.12	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11 2.12	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11 2.12	Derivatives of Inverse Trignometric Functions by Suitable Substitution
2.9 2.10 2.11 2.12	Derivatives of Inverse Trignometric Functions by Suitable Substitution

UNIT III

Chapter 3: Definite Integraiton	3-1 to 3-92
---------------------------------	-------------

	-	-	
C1/	la.	bus	
3 V I	IIa	Dus	٠.

- 3.1 Concept and Definition of Integration.
- 3.2 Working rules and Integral of standard functions.
- 3.3 Method of substitution.
- 3.4 Integration by parts.
- 3.5 Definite Integral and its properties.
- 3.6 Applications: Area and volume. (Simple problems)

3.1	Integration 3-1
3.1.1	Indefinite Integral3-1
3.1.2	Integration of Standard Function3-1
3.2	Rules of Integration3-2
3.3	Solved Examples on Simple Integration 3-2
3.4	Integration of Composite Function 3-7
3.5	Integrals of Simple Algebraic
	Rational Functions3-8
3.6	Integration by Trignometric Transformation 3-9
3.7	Integration by Substitution Method3-15
3.7.1	Some Substitutions3-16
3.8	Solved Examples3-16
3.9	Integral of the Form3-24
3.9.1	Solved Example3-24
3.10	Integration by Partial Fraction3-26
3.11	Integral of the Form3-31
3.11.1	Examples3-31

3.12	Integrals of the Form3-33
3.12.1	Integrals of the Form3-33
3.13	Integration by Parts3-36
3.14	Definite Integral 3-41
3.15	Some Properties of Definite Integral 3-41
3.15.1	Examples
3.16	Problems on Property of Definite
	Integration
3.17	Definite Integral by Method
	of Substitution3-59
3.18	Integration by Parts3-67
3.18.1	Examples
3.19	Introduction
3.20	Area under the Curve as a Definite Integral 3-71
3.20.1	Examples 3-71
3.21	Area between Two Curves3-79
3.21.1	Examples 3-79
3.22	Volume of a Solid of Revolution3-84
3.22.1	Examples 3-84
	LIMIT IV

UNIT IV

Chapter 4: Differential Equations 4-1 to 4-29

Syllabus:

- 4.1 Concept and Definition, Order and Degree of differential Equation.
- 4.2 Solution of DE of first degree and first order by Variable Separable method.
- 4.3 Solution of linear Differential Equation.

4.1	Introduction 4-1
4.2	Solved Examples4-1
4.3	Solution of Differential Equations of First
	Order and First Degree4-6
4.4	Examples4-6
4.5	Equation Reducible to Variable
	Separable Form4-13
4.6	Solved Examples4-13
4.7	Solution of Linear Differential Equation4-14
	UNIT V

Chapter 5: Complex Number 5-1 to 5-37

Syllabus:

- 5.1 Concept of Complex number.
- 5.2 Algebra of Complex numbers.
- 5.3 Conjugate, Modulus and inverse of Complex numbers.
- 5.4 Argument and Polar form of a Complex number.
- 5.5 De Moivre's Theorem and related simple examples.
- 5.6 Square root of a Complex number and cube root of unity.

5.1	Introduction 5-1
5.2	Definition of a Complex Number 5-2
5.3	Conjugate of Complex Number5-2
5.4	Algebra of Complex Number 5-2
5.4.1	Equality of Complex Numbers5-2
5.4.2	Addition and Subtraction of Complex Number 5-2
5.4.3	Multiplication of Complex Number5-3
5.4.4	Division of Complex Number5-3

		i	
5.5	Graphical Representation of Complex	5.8.2	Equality of Complex Numbers in Polar
	Number (Argand's Diagram)5-3		or Exponential Form5-14
5.6	Examples5-3	5.9	De Moivre's Theorem5-19
5.6.1	Modulus or Magnitude of Complex Number5-9	5.10	Roots of Complex Equations5-26
5.6.2	Amplitude or Argument of Complex Number 5-9	5.11	Procedure to Find Root of any
5.7	Polar Form of Complex Number 5-12		Complex Number5-28
5.8	Exponential Form of Complex Number 5-13		
5.8.1	Product of Complex Numbers in Polar		
	or Exponential Form5-13		

